# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Simulate the data directly into a tibble
md = tibble::tibble(
ID = factor(sample(1:10, 1000, replace = TRUE)),
var1 = rnorm(1000, mean = 0, sd = 1),
var2 = rnorm(1000, mean = 5, sd = 2),
resp = rnorm(1000, mean = 10, sd = 3))
## Create a covariance matrix (e.g., relatedness matrix)
cov_matrix = matrix(rnorm(10 * 10), 10, 10)
cov_matrix = cov_matrix %*% t(cov_matrix) # Make it positive semi-definite
rownames(cov_matrix) = colnames(cov_matrix) = 1:10
## Ensure the covariance matrix is symmetric
cov_matrix = (cov_matrix + t(cov_matrix)) / 2
mod = brms_cov_model(Chainset = 3,
Response = "resp",
FixedEffect = c("var1", "var2"),
ID = "ID",
Matrix = cov_matrix,
Family = "gaussian",
Data = md,
Seed = 0405)
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Variance decomposition
var_decomp(mod)
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Model summary
model_summary(mod)
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model without random slope
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Run model with random slope
mod_RS = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomSlope = c("n_var", "group"),
Family = "gaussian",
Data = md)
compare_slopes(mod, mod_RS, Slope = "n_var")
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Check model fit
model_fit(mod, Prior = TRUE)
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Plot fixed effects
plot_intervals(mod)
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
# Plot R2
plot_R2(mod, PlotType = "pizza", Label = "box")