R/model_summary.R
model_summary.Rd
Model summaries with variance decomposition for brms models
model_summary(brmsfit)
Returns a data frame with the summaries of posterior estimates.
# Simulate data
md = tibble::tibble(
group = factor(sample(1:10, 1000, replace = TRUE)),
f_var = factor(sample(1:3, 1000, replace = TRUE)),
n_var = rnorm(1000, mean = 0, sd = 1),
resp = rnorm(1000, mean = 10, sd = 3))
# Run model
mod = brms_model(Response = "resp",
FixedEffect = c("f_var","n_var"),
RandomEffect = "group",
Family = "gaussian",
Data = md)
#> [1] "No problems so far 🤓"
#> Compiling Stan program...
#> Start sampling
# Model summary
model_summary(mod)
#> # A tibble: 11 × 6
#> variable mean median sd lower_HPD upper_HPD
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Intercept 9.97 9.96 0.219 9.52 10.4
#> 2 f_var2 0.0128 0.0115 0.234 -0.450 0.488
#> 3 f_var3 0.111 0.107 0.231 -0.354 0.540
#> 4 n_var 0.0281 0.0276 0.0938 -0.160 0.202
#> 5 R2_n_var 0.0011 0.0005 0.0016 0 0.0041
#> 6 R2_f_var2 0.0013 0.0006 0.0019 0 0.0052
#> 7 R2_f_var3 0.0016 0.0007 0.0022 0 0.006
#> 8 R2_FixedEffects 0.004 0.003 0.0036 0 0.0108
#> 9 R2_group 0.0214 0.0162 0.02 0 0.0576
#> 10 R2_RandomEffects 0.0214 0.0162 0.02 0 0.0576
#> 11 R2_residual 0.975 0.980 0.0201 0.939 0.999
#> hain 1: 37.301 seconds (Sampling)
#> Chain 1: 93.42 seconds (Total)
#> Chain 1:
#> Chain 2: Iteration: 30000 / 30000 [100%] (Sampling)
#> Chain 2:
#> Chain 2: Elapsed Time: 59.492 seconds (Warm-up)
#> Chain 2: 36.013 seconds (Sampling)
#> Chain 2: 95.505 seconds (Total)
#> Chain 2: